;here is the binary tree implementation
;constructor
(define (make-tree entry left right)
(list entry left right))
;selectors
(define (entry tree)
(car tree))
(define (left-branch tree)
(cadr tree))
(define (right-branch tree)
(caddr tree))
;mutator
(define (set-left-branch! tree value)
(set-car! (cdr tree) value))
(define (set-right-branch! tree value)
(set-car! (cddr tree) value))
;here is the one dimensional table impl
;using above interface
;assume there is a compare procedure for the set
;of keys, that returs -1,0,+1 if key1 is less than key2,
;key1 is equal to key2, key1 is greater than key2
;respectively
(define (compare key1 key2) ...)
;for numeric keys following is what the compare will
;look like
(define (compare key1 key2)
(cond
((= key1 key2) 0)
((< key1 key2) -1)
(else 1)))
(define (make-table)
(cons '*table* nil))
(define (insert! key value table)
(define (insert-aux! tree)
(let* ((record (entry tree))
(index (compare key (car record))))
(cond
((= index 0) (set-cdr! record value))
((< index 0)
(if (null? (left-branch tree))
(set-left-branch!
tree
(make-tree (cons key value) nil nil))
(insert-aux! (left-branch tree))))
(else
(if (null? (right-branch tree))
(set-right-branch!
tree
(make-tree (cons key value) nil nil))
(insert-aux! (right-branch tree)))))))
(if (null? (cdr table))
(set-cdr! table (make-tree (cons key value) nil nil))
(insert-aux! (cdr table))))
(define (lookup key table)
(define (lookup-aux tree)
(if (null? tree) #f
(let* ((record (entry tree))
(index (compare key (car record))))
(cond
((= index 0) (cdr record))
((< index 0) (lookup-aux (left-branch tree)))
(else
(lookup-aux (right-branch tree)))))))
(lookup-aux (cdr table)))
Sunday, July 26, 2009
Ex-3.26
This is an implementation of one dimensional table, where (key, value) records are organized in a binary tree.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment