;changed runtime to get-universal-time
(define (timed-prime-test n)
(newline)
(display n)
(start-prime-test n (get-universal-time)))
(define (start-prime-test n start-time)
(if (prime? n)
(report-prime (- (get-universal-time) start-time))))
(define (report-prime elapsed-time)
(display " *** ")
(display elapsed-time))
; its assumed that start and end are odd numbers
; start <= end
(define (search-for-primes start end)
(if (not (= start end))
(begin
(timed-prime-test start)
(search-for-primes (+ start 2) end))))
3 primes above 1000:
1009, time-taken: 0
1013, time-taken: 0
1019, time-taken: 0
3 primes above 10000:
10007, time-taken: 0
10009, time-taken: 0
10037, time-taken: 0
3 primes above 100000:
100003, time-taken: 0
100019, time-taken: 0
100043, time-taken: 0
3 primes above 1000000:
1000003, time-taken: 0
1000033, time-taken: 0
1000037, time-taken: 0
machines now a days are quite faster, I can see the observable difference at following numbers
3 primes above 1000000000000:
1000000000039, time-taken: 4 s
1000000000061, time-taken: 4 s
1000000000063, time-taken: 4 s
3 primes above 10000000000000:
10000000000037, time-taken: 13 s
10000000000051, time-taken: 13 s
10000000000099, time-taken: 13 s
3 primes above 100000000000000:
100000000000031, time-taken: 41 s
100000000000067, time-taken: 41 s
100000000000097, time-taken: 42 s
and indeed the (sqrt 10) factor is visible for above 3 data-sets. So, yes execution time on the machine is proportional to the number of steps required for the computation.
Ex-1.23:
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (next test-divisor)))))
(define (next test-divisor)
(if (= test-divisor 2) 3
(+ test-divisor 2)))
3 primes above 1000000000000:
1000000000039, time-taken: 2 s
1000000000061, time-taken: 2 s
1000000000063, time-taken: 3 s
3 primes above 10000000000000:
10000000000037, time-taken: 7 s
10000000000051, time-taken: 8 s
10000000000099, time-taken: 7 s
3 primes above 100000000000000:
100000000000031, time-taken: 23 s
100000000000067, time-taken: 25 s
100000000000097, time-taken: 24 s
If we compare these results with those in Ex-1.22, they're indeed halved(not exactly but close).
Ex-1.24-
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (square (expmod base (/ exp 2) m))
m))
(else
(remainder (* base (expmod base (- exp 1) m))
m))))
(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))
(define (fast-prime? n times)
(cond ((= times 0) true)
((fermat-test n) (fast-prime? n (- times 1)))
(else false)))
(define (timed-prime-test n)
(newline)
(display n)
(start-prime-test n (get-universal-time)))
(define (start-prime-test n start-time)
(if (fast-prime? n 10)
(report-prime (- (get-universal-time) start-time))))
(define (report-prime elapsed-time)
(display " *** ")
(display elapsed-time))
3 primes above 1000000000000:
1000000000039, time-taken: 0 s
1000000000061, time-taken: 0 s
1000000000063, time-taken: 0 s
3 primes above 10000000000000:
10000000000037, time-taken: 0 s
10000000000051, time-taken: 0 s
10000000000099, time-taken: 0 s
3 primes above 100000000000000:
100000000000031, time-taken: 0 s
100000000000067, time-taken: 0 s
100000000000097, time-taken: 0 s
no observable time difference at these numbers using fermat's test
Conclusion: Execution time on the machine is roughly proportional to the number of steps required in doing the computation.
No comments:
Post a Comment